Quantifying Fluid Cleanliness

QUANTIFYING SOLID PARTICLE CONTAMINATION

STRUCTURE OF ISO 4406 CODE:

Cleanliness levels are defined by three numbers divided by slashes (/). These numbers correspond to 4, 6 and 14 micron, in that order. Each number refers to an ISO Range Code which is determined by the number of particles for that size (4, 6, 14 micron) and larger present in 100 ml of fluid. Each range is double the range below. Refer to the chart to see the actual ranges.

250,000,000

EXAMPLE:

Larger than $4 \mu m = 125,000$ Larger than $6 \mu m = 29,490$ Larger than $14 \mu m = 4,250$

NAS 1638

Contamination level according to NAS 1638: the contamination classes are defined by a number (from 00-12) which indicates the maximum number of particles per 100 ml, counted on a differential basis in a given size bracket. Most industrial users quote a single code which is the highest recorded in all sizes, e.g. NAS 6.

18/15/13

15/13/8

230,000,000					28
	130,000,000				27
	64,000,000				26
	32,000,000				25
	16,000,000				24
	8,000,000				23
	4,000,000				22
	2,000,000				21
	1,000,000				20
	500,000				10
	250,000				18
	130,000	17			17
	64,000	17			17
	32,000		15		15
	16,000		10		1.1
	8,000			10	14
	4,000			13	10
	2,000				11
	1,000				10
	500				10
	250				9
	130				8
	64				/
	32				6
	16				5
	8				4
	4				3
	2				2
	1				1
	0.5				0

NAS CLASSES														
	00	0	1	2	3	4	5	6	7	8	9	10	11	12
5-15	125	250	500	1000	2000	4000	8000	16000	32000	64000	128000	256000	512000	1024000
15-25	22	44	89	178	356	712	1425	2850	5700	11400	22800	45600	91200	182400
25-50	4	8	16	32	63	126	253	506	1012	2025	4050	8100	16200	32400
50-100	1	2	3	6	11	22	45	90	1801	360	720	1410	2880	5760
over 100	0	0	1	1	2	4	8	16	32	64	128	256	512	1024

SUBJECT TO CHANGE WITHOUT PRIOR NOTICE

Coenecoop 71 | 2741 PH | Waddinxveen | the Netherlands T: (31) 182 30 28 88 F: (31) 182 30 28 89 E: info@rmffilter.com

SAE AS 4059 REV.E**

CLEANLINESS CLASSIFICATION FOR HYDRAULIC FLUIDS (SAE AEROSPACE STANDARD)

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA2.

TABLE 1 - CLEANLINESS CLASSES FOR DIFFERENTIAL PARTICLE COUNTS MAXIMUM CONTAMINATION LIMITS (PARTICLES/100ML)

	SIZE	6 TO 14	14 TO 21	21 TO 38	38 TO 70	>70
CLASSES	<u> </u>	μm	μm	μm	μm	μm
	00	125	22	4	1	0
	0	250	44	8	2	0
	1	500	89	16	3	1
	2	1.000	178	32	6	1
	3	2.000	356	63	11	2
	4	4.000	712	126	22	4
	5	8.000	1.425	253	45	8
	6	16.000	2.850	506	90	16
	7	32.000	5.700	1.012	180	32
	8	64.000	11.400	2.025	360	64
	9	128.000	22.800	4.050	720	128
	10	256.000	45.600	8.100	1.440	256
	11	512.000	91.200	16.200	2.880	512
	12	1.024.000	182.400	32.400	5.760	1.024

TABLE 2 - CLEANLINESS CLASSES FOR CUMULATIVE PARTICLE COUNTS MAXIMUM CONTAMINATION LIMITS (PARTICLES/100ML)

SIZE	>4 µm	>6 µm	>14 µm	>21 µm	>38 µm	>70 µm
SIZE CODE CLASSES	А	В	С	D	E	F
000	195	76	14	3	1	0
00	390	152	27	5	1	0
0	780	304	54	10	2	0
1	1.560	609	109	20	4	1
2	3.120	1.217	217	39	7	1
3	6.250	2.432	432	76	13	2
4	12.500	4.864	864	152	26	4
5	25.000	9.731	1.731	306	53	8
6	50.000	19.462	3.462	612	106	16
7	100.000	38.924	6.924	1.224	212	32
8	200.000	77.849	13.849	2.449	424	64
9	400.000	155.698	27.698	4.898	848	128
10	800.000	311.396	55.396	9.796	1.696	256
11	1.600.000	622.792	110.792	19.592	3.392	512
12	3.200.000	1.245.584	221.584	39.184	6.784	1.024

** The information reproduced on this and the previous table is a brief extract from SAE AS4059 Rev. E revised in May 2005. For futher details and explanations refer to the full Standard.

RMF ISO Cleanliness Levels

TO ACHIEVE THE CORRECT CLEANLINESS LEVEL

A combination of filters must be used to achieve the correct cleanliness level in a hydraulic or lubrication system.

RMF Systems offers a comprehensive range of Of f- line f ilters, By -pass filters and Air conditioners (desiccant breathers) to achieve and maintain extremely low contamination levels in hydraulic and/or lubrication systems (water and solid particles).

SETTING THE CLEANLINESS LEVEL REQUIRED BY A SYSTEM

- 1. Starting at the left hand column, select the most dirt sensitive component used in the system.
- 2. Move to the right to the column that describes the system pressure and conditions.
- 3. Here you will find the recommended ISO class level.

	LOW/MEDIUM PRESSURE UNDER 140 BAR MODERATE CONDITIONS	HIGH PRESSURE 140-210 BAR SEVERE CONDITIONS	VERY HIGH PRESSURE 210 BAR AND HIGHER. HIGH PRESSURE AND SEVERE CONDITIONS
PUMPS			
Fixed gear/Fixed vane	20/18/15	19/17/14	18/16/13
Fixed piston	19/17/14	18/16/13	17/15/12
Variable vane	18/16/13	17/15/12	Not applicable
Variable piston	18/16/13	17/15/12	16/14/11
VALVES			
Check valves	20/18/15	20/18/15	19/17/14
Directional valves	20/18/15	19/17/14	18/16/13
Standard flow valves	20/18/15	19/17/14	18/16/13
Car tridge valves	19/17/14	18/16/13	17/15/12
Propor tional valves	17/15/12	17/15/12	16/14/11
Ser vo valves	16/14/11	16/14/11	15/13/10
ACTUATORS			
Cylinders, Vane mtors, Gear motors	20/18/15	19/17/14	18/16/13
Piston motors, Swash plate, Gear motors	19/17/14	18/16/13	17/15/12
Hydrostatic drives	16/15/12	16/14/11	15/13/10
Test stands	15/13/10	15/13/10	15/13/10
BEARINGS			
Journal bearings	17/15/12	Not applicable	Not applicable
Industrial gear boxes	17/15/12	Not applicable	Not applicable
Ball bearings	15/13/10	Not applicable	Not applicable
Roller bearings	16/14/10	Not applicable	Not applicable

Cleanliness Selection Guide

FLUID VISCOSITY

The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion near solid boundaries. The viscosity is the fluid resistance to shear or flow and is a measure of the adhesive/cohesive or frictional fluid property. The resistance is caused by intermolecular friction exerted when layers of fluids attempt to slide by one another. Viscosity is a measure of a fluid's resistance to flow. The knowledge of viscosity is needed for proper design of required temperatures for storage, pumping or injection of fluids. There are two related measures of fluid viscosity - known as dynamic (or absolute) and kinematic viscosity.

VISCOSITY CLASSIFICATION

ISO VISCOSITY GRADE	MIDPOINT KINEMATIC VISCOSITY MM ² /S AT 40°C (104°F)	KINEMATIC VISCOSITY LIMIT MM²/S AT 40°C (104°F) MINIMUM	KINEMATIC VISCOSITY LIMIT MM²/S 40°C (104°F) MAXIMUM
ISO VG 2	2.2	1.98	2.42
ISO VG 3	3.2	2.88	3.52
ISO VG 5	4.6	4.14	5.06
ISO VG 7	6.8	6.12	7.46
ISO VG 10	10	9.00	11.0
ISO VG 15	15	13.5	16.5
ISO VG 22	22	19.8	24.2
ISO VG 32	32	29.8	35.2
ISO VG 46	46	41.4	50.6
ISO VG 68	68	61.2	74.8
ISO VG 100	100	90.0	110
ISO VG 150	150	135	165
ISO VG 220	220	198	242
ISO VG 320	320	288	352
ISO VG 460	460	414	506
ISO VG 680	680	612	748
ISO VG 1000	1000	900	1100
ISO VG 1500	1500	1350	1650
ISO VG 2200	2200	1980	2420
ISO VG 3200	3200	2880	3520

VISCOSITY CONVERSION CHART

CST (CENTISTOKES)	SUS (SAYBOLT UNIVERSAL SECONDS)*
10	46
20	93
25	116
30	139
32.4	150
40	185
50	232
70	324
90	417

Comparisons are made at 100° F (38°C). For other viscosity conversion approximations, use the formula: cSt=SUS/4.635 *Note: Saybolt universal seconds may also be abbreviated SSU.